Using Artificial States in Modeling Dynamic Systems: Turning Malpractice into Good Practice

Dirk Zimmer
DLR, Institute of System Dynamics and Control
A New Way to Model Non-linearities

- This presentation offers a new way for the modeler to describe his systems of non-linear equations so that they can be solved more robustly.

- To this end, we introduce a new operator and present a corresponding algorithm.

- The idea originated from many years of practical modeling experience.

- So let us start by a practical example.
Example: ECS Air Cycle

- In aircraft, bleed air from the engine is used to pressurize the cabin.

- Bleed air is hot: 220° C

- Bleed air is at high pressure: 2.5 bar

- So it needs to be cooled down and expanded before it enters the cabin.

- One architecture to achieve this is the three wheel bootstrap circuit

Source: ECS Blog
Three Wheel Bootstrap Circuit

- At DLR, we modeled this circuit using Modelica:
Three Wheel Bootstrap Circuit

- At DLR, we modeled this circuit using Modelica:

- The ram air channel provides the cooling reservoir
Three Wheel Bootstrap Circuit

- At DLR, we modeled this circuit using Modelica:

- The ram air channel provides the cooling reservoir

- The air is then cooled and expanded. It passes four heat exchangers
At DLR, we modeled this circuit using Modelica:

- The ram air channel provides the cooling reservoir

- The bleed air is then cooled and expanded. It passes four heat exchangers

- The energy gained in the turbine is used to power compressor and fan by the drive shaft.
Three Wheel Bootstrap Circuit

- The model is actually conceived as stateless and models no dynamics.

- Instead we look for the equilibrium point:

- Balance of mechanical energy at the drive shaft

- Balance of thermal energy at the heat exchangers
Three Wheel Bootstrap Circuit

- Formulating these balances leads to a system with more than 200 non-linear equations.

- Dymola tries its best but there remain more than 40 iteration variables.

- It is very difficult to find a solution.

- It is computationally very expensive.
Three Wheel Bootstrap Circuit

- How does physics reach the balance point?
- We add an inertia to the drive shaft.
- We add thermal inertia to the heat exchangers.
- So we have added 5 additional states to our system.
- These are artificial states since we are not interested in the corresponding dynamics.
Three Wheel Bootstrap Circuit

- With 5 additional states, there remain only single non-linear equations that can be solved sequentially.

- The system can be solved in a robust way.

- Simulation with 5 states is still faster than with a system of 40 iteration variables.
Review: The Method of Artificial States

We have applied a common method to cope with a system of non-linear equations: **The method of artificial states**

- We have torn the system apart by introducing artificial states

- Instead of prescribing the balance law directly, we are now describing how to reach the balance point as quasi steady state solution.

- We can do this, because we know the physics of our system.

- In this way, we abuse time-integration as solver for non-linear systems
Classes of Artificial States

The method of artificial states appears in many disguises

- **Adding storages of energy**
 like micro-capacitances, small inertias, spring-dampers, intermediate volumes for fluids, etc.

- **Adding Controllers**
 Integration-based controllers lead to the equilibrium point

- **Signal Filters**
 used to tear apart algebraic loops.
Is it Malpractice?

Unfortunately, artificial states involve many disadvantages

- **Stiffness** is added to the system
 - limits step-size
 - impairs real-time capability
 - local problem creates global damage

- Simulation **results are polluted** by artificial dynamics

- **Loss of precision**

- Time-constants are hard to retrieve and result in **fudge parameters**

Are these disadvantages inevitable?
What is the Problem?

When using artificial states, the modeler evidently makes a distinction between

- Dynamic processes that are relevant of the system under study.

- Dynamic processes that describe how to solve a non-linear system of equations.

He is forced to mix up these dynamics since M&S Frameworks provide no means to make a proper distinction.

Hence we propose on tool: balance dynamics equations.
Balance Dynamics Equations

- The main idea is to give the modeler a way to express his non-linear system as a result of an idealization.

- When we added the inertia, we used the following differential equation

$$\text{der}(\omega) \cdot I = \tau$$

where I is the fudge parameter.

- Ideally we want $I \rightarrow 0$ and reach the steady-state solution $0 = \tau$ infinitely fast. To express this we use the new balance operator instead of the derivative operator.

$$\text{balance}(\omega) = \tau$$

- The fudge parameter is gone
Small Application Example

- Let us simulate the following system:

\[
\frac{dx}{dt} = y \\
\frac{dy}{dt} = -0.1 \cdot a - 0.4 \cdot y \\
s(a) = 10 \cdot x
\]

- This is the simulation result:
The Problematic Non-linear Equation

- x and y are states and we need to solve the last equation for a with $s(a)$ being defined as:

- for $a < -1$: $s(a) = a/4 - 3/4$
- for $a > 1$: $s(a) = a/4 + 3/4$
- else: $s(a) = a$

- Since the solution by Newton’s method is tricky when the start values jumps over 1 (resp. -1), we have to choose a very small step-size (here 0.01s with Heun).
How to Use Balance Dynamics Equations?

- But we know that \(s(a) \) is a monotonic increasing function. So we can use a balance dynamics equation to get to the solution.

\[
\frac{dx}{dt} = y \\
\frac{dy}{dt} = -0.1 \cdot a - 0.4 \cdot y \\
balance(a) = 10 \cdot x - s(a)
\]

- The balance dynamics equation can be interpreted as control law:

\[
der(a) \cdot T = 10 \cdot x - s(a)
\]

- If \(a \) is too small, \(a \) is increased and if \(a \) is too high, \(a \) is decreased.
How to Interpret Balance Dynamics Equations?

\[
\begin{align*}
\frac{dx}{dt} &= y \\
\frac{dy}{dt} &= -0.1 \cdot a - 0.4 \cdot y \\
balance(a) &= 10 \cdot x - s(a)
\end{align*}
\]

- This system can now be interpreted in two ways:

To solve the ODE

\[
\begin{align*}
\frac{dx}{dt} &= y \\
\frac{dx}{dt} &= -0.1 \cdot a - 0.4 \cdot y \\
0 &= 10 \cdot x - s(a)
\end{align*}
\]

To solve the non-linear equation

\[
\begin{align*}
x &= \text{const} \\
da/dt &= 10 \cdot x - s(a)
\end{align*}
\]

- The idea is to use a sub-simulation to solve the non-linear equation and get the solution of the steady-state.
How to Perform such a Sub-simulation?

- If we want to simulate a system $dx = f(x)$ just to get to the steady state then this is a special case. Which integration method to use?

 - Since the system is supposed to be stable, we take an implicit solver

 - Since the steady state solution is insensitive to the local integration error, an order 1 method is sufficient.

- Hence we end up using Backward Euler. One step of BE:

$$x_{t+h} = x_t + h \cdot f(x_{t+h})$$

- requires us to solve:

$$g(x_{t+h}) = x_t - x_{t+h} + h \cdot f(x_{t+h})$$
Turning Sub-simulation into a Continuation Method

- Evidently for $h \to \infty$, solving $g(x_{t+h})$ becomes equivalent to solving $f(x)$ directly.

- But we have won one important degree of freedom: we can choose h and there will always be an h small enough to stay in the convergence interval.

- In this way, we have transformed the problem into a numerical continuation problem (as used in homotopy solvers).

- We can adapt the natural parameter continuation for our purposes.
Continuation Solver for Balance Dynamics

- This algorithm becomes part of the main simulation loop and replaces the former direct solver for $0 = f(x)$

- The continuation method wraps Newton’s method and thereby adds robustness

- Having a good initial guess and a good initial value for h, the overhead of the continuation solver is low.

- Let us apply this solver to our application example.
Application Example

- Remember: this was the simulation result.

- With balance dynamics, we can afford to take much larger steps (here 0.1s with Heun but much larger is possible)
Application Example

- This diagram presents the number of function calls of $s(a)$ in each integration step using our continuation solver:

This is where pure gradient based solvers would have failed.

With good guess values, there is hardly any overhead.
Conclusions

- Balance dynamics equations provide an elegant way to incorporate vital knowledge on how to solve systems of non-linear equations.

- Modelers can now apply the method of artificial states without having a bad conscience.

- Solving non-linear systems is still not for free but at least we can avoid creating a global damage to our system. The problem is kept local.

- The proposed operator is not the ultimate answer but it is good enough to continue the examination of this method.
What Needs to be Done?

- We need test implementations (for instance in Modelica tools) so that we can apply this method to more complex and realistic examples.

- We at DLR cannot do all of this work, so we are looking for people wanting to join this research task.

- There remain a number of interesting research question that wait to be answered:
 - How to generate code for balance dynamics solver?
 - How to best implement a continuation solver?
 - How to design the language for balance dynamics?
Questions?