Toward an Equation-Oriented Framework for Diagnosis of Complex Systems

Gregory Provan and Alexander Feldman

Apr 19, 2013, Nottingham
Overview

• Motivation
• Related Work
 – LNG vs. Modelica
• Lydia-NG Overview
• Examples
 – Circuits
 – Thermo-Fluid Systems
• Summary
Motivation

• How can Modelica libraries be used for Model-Based Diagnosis (MBD)?

• Significant value in Modelica libraries
 – Can this be leveraged for MBD?

• Must understand difference between
 – Simulation (via Modelica)
 – MBD
Contributions

• Equation-based framework for Model-Based Diagnosis
 – Generalisation of Modelica (inference)
 – Uses multiple simulation tools, as well as diagnosis inference tools

• Application to several systems
 – Circuits, thermo-fluid systems
• Assume component-based framework
• Each component has operating mode
 – Mode defines a set of dynamical equations
 – Example
 • \(y = f(x, h) \)
 • \(y \): output; \(x \): state vector; \(h \): mode
Example: Boolean XOR

```c
system xor2(bool o, i1, i2) {
    bool h; // mode variable
    attribute health(h) = h; // like annotations

    h => (o = (i1 != i2));
    !h => (o = !(i1 != i2));
}
```
Simulation

• Given inputs and a health state, compute outputs

\[y = f(x) \]

\[x: \text{input}, \quad y: \text{output}, \quad f: \text{system function}, \quad f_i: \text{component functions} \]

• Simulate: solve problem \(y = f(x) \)
Fault Diagnosis

- Identify component(s) that are **root cause of failure** (error)

 ![Diagram](image)

 - x, y: observation vectors
 - f: system function, f_i: component functions
 - h: system health state vector, h_i: component health variables

- Diagnose failure: solve inverse problem $\underline{h} = f^{-1}(x, y)$

- Diagnosis: $\underline{h}_2 = \text{fault state}$, or \underline{h}_4 and $\underline{h}_5 = \text{fault state}$
Simulation vs. Diagnosis

• Simulation
 – solving a system of equations for some output variables

• Diagnosis
 – solving a system of equations for some set of health variables,

 – However:
 • Diagnostic systems typically under-constrained due to ignorance of abnormal behavior, etc.
 • Simulation systems often constructed to have one solution,
 – in diagnosis we want to compute multiple solutions (hypotheses/diagnostic candidates)
Overview

• Motivation

• Related Work
 – Lydia-NG vs. Modelica

• Lydia-NG Overview

• Examples
 – Circuits
 – Thermo-Fluid Systems

• Summary
Related Work

• Rodelica
 – Atemporal, interval-based approach
• Modelica
• Bond graphs
LYDIA-NG and MODELICA

• **LYDIA-NG** is very similar to Modelica
 – solves Modelica models for some parameters
 – we plan a Modelica translation tool for easy modeling
 • problem is some Modelica component libraries include non-declarative model entities
LYDIA-NG vs. MODELICA

LYDIA-NG
- Braces (C/C++/Verilog)
- Not object-oriented (may become in the future)
- Strongly-typed
- Quantified (existential, universal), static expansion

MODELICA
- begin/end (Pascal/VHDL)
- Object-oriented
- Strongly-typed
- Less static
LYDIA-NG vs. MODELICA (cont.)

- **LYDIA-NG**
 - no connectors (only variables)
 - no flow variables (a.k.a. write your own “global” equations)
 - fairly complex data types: structures, arrays, array of structures, etc.
 - special treatment of Boolean systems (legacy)

- **MODELICA**
 - uses connectors
 - flow variables (equation sugar)
Compilation and Inference

• Lydia-NG
 – Compilation not a key aspect
 • Output C code can be used by any inference system

• Modelica
 – Compilation key aspect for efficiency
 – Compilation can lead to incompatibility among Modelica inference systems
system HeatingCoil(PneumaticPort pneumaticCold, pneumaticHot, HydraulicPort hydraulicCold, hydraulicHot)
{
 float c = 4180.0; // water specific heat

 float coldSideCapacitanceRate = pneumaticCold.mflow * c;
 float hotSideCapacitanceRate = hydraulicCold.mflow * c;

 float eff = 0.6;

 float minCapacitanceRate = min(coldSideCapacitanceRate, hotSideCapacitanceRate);
 float maxCapacitanceRate = max(coldSideCapacitanceRate, hotSideCapacitanceRate);

 float heatRate = eff * minCapacitanceRate * (hydraulicHot.T - pneumaticCold.T);

 hydraulicHot.T = hydraulicCold.T - heatRate / (hydraulicCold.mflow * c);
 pneumaticHot.T = pneumaticCold.T + heatRate / (pneumaticCold.mflow * c);
}
• **LYDIA-NG is a diagnostic framework**
 – Use cases:
 • modeling of diagnostic systems (also an IDE)
 • running of diagnostic scenarios in batch mode (computation of diagnostic metrics)
 • embedding in a SCADA system, e.g., a BMS

• **Our view on the development of LYDIA-NG**
 – collection of tools (simulators, translators, etc.)
 – simple interfaces (our users are not assumed to be expert MBD users)
 – higher coding/documentation/knowledge dissemination standards than typical projects
LYDIA-NG Overview

• Core libraries
 – simulation
 • SPICE
 • symbolic
 • ODEs/DAEs
 • Boolean circuits (old LYDIA heritage)
 – diagnosis
 • forward reasoning (simulation for various health/fault states)
 • backward reasoning (residual analysis)
 – disambiguation
 • entropy-based selection of tests
 • virtual sensors (by-product)
LYDIA-NG Approach to Diagnosis

- The main idea is to run multiple simulations simultaneously (each simulation reflects different health state)
- Choose those simulations that minimize some residual function
- Report diagnosis as a probability of each component being healthy/faulty
State of LYDIA-NG Development

- **LYDIA-NG** has reached a milestone in diagnosing an electrical system
 - results show that the software will be useful in practice
 - releasing version 1.0 after fixing some bugs, documentation, and testing
 - preview versions of the software continuously made available to EMWiNS team members for purpose of progress-tracking, collaboration, and planning
Validation of Diagnostics

- Validation of diagnostics is in general more difficult than that of simulation
 - simulation accuracy metrics such as mean difference from measured values
 - diagnostic accuracy metrics are interrelated (false positives vs. false negatives, classification errors, etc.)
 - diagnostic metrics are often domain-dependent (e.g., energy)
 - diagnostic world is “less closed”, some metrics can be computed only after, e.g., “repair”
Overview

• Motivation
• Related Work
 – LNG vs. Modelica
• Lydia-NG Overview
• Examples
 – Circuits
 – Thermo-Fluid Systems
• Summary
Use-Cases

• Many Boolean circuits (ISCAS-85)
 – show properties of complex systems, easier to analyze complexity
 – check correctness of some diagnostic algorithms
• Analog electrical circuits (GOCE satellite EPS, NASA’s ADAPT)
• Thermal-fluid systems (UCC’s AHU-9)
Use-Case AHU System
AHU Modeling
LYDIA-NG and AHU-9

 Modeling effort includes the following:
 – Top-level topology (100%)
 – Component fault-modes and user commands (100%)
 – Component equations (0%)

 Model parametrization and calibration
AHU Simulation

- ODE
 - not stiff
 - RK4 will do the job
 - error is function of the step-size
- We need to maintain multiple simulations that can be stopped/continued whenever sensor data arrives
- Some ODEs reduce to algebraic equations – we also saw from GOCE that fault simulations are cheaper in terms of CPU time, memory
Overview

• Motivation
• Related Work
 – LNG vs. Modelica
• Lydia-NG Overview
• Examples
 – Circuits
 – Thermo-Fluid Systems
• Summary
Summary

• Lydia-NG: MBD framework
 – Accepts multiple equation types
 – Generalises Modelica
 • mode-based equations
 • Wider range of inference algorithms
Future Work

• Integrate control
• Extend language to wider range of dynamical systems
• Examine other real-world applications
 – thermal systems
 – Mechanical systems (drive trains)
• DXC-2013
Call for Participation

• Want to play with/test/develop LYDIA-NG?
 – LYDIA-NG is free for academic use/open-source
 – send an email to alex@general-diagnostics.com

• Want to apply LYDIA-NG to your research/write a paper?

• Want to extend LYDIA-NG to solve #@! equations?

4/23/2013
Come to DX-2013

• Come to DX-2013, Oct 1-4, Dan Panorama Hotel, Jerusalem (http://dx-2013.org/)

• DXC-2013
 • synthetic track (ISCAS)
 • electrical system (ADAPT)
 • thermal fluid system (AHU-9)
 • software track
Thank You
Backup
Introduction

• History
 – **LYDIA** – diagnosis of Boolean circuits
 • **SAFARI** – stochastic diagnosis
 • **FRACTAL** – disambiguation of diagnoses (reduce diagnostic uncertainty – entropy based methods)
 • Beyond diagnosis – worst case sensor data – diagnosability (**MIRANDA**)
 – A resistor network can be modeled with Boolean variables but that is very difficult – e.g., 4-bit multiplication tables
 – **LYDIA-NG** – generalization to continuous variables
 • **SAFARI-NG** – greedy stochastic reasoning, but also other candidate generation policies
 • **FRACTAL-NG** – disambiguation

• The insight that allows generalization of Lydia to Lydia-NG is that simulation is a key-component in model-based diagnosis
 – What is the simulation step in the MBD circuit problem shown in the next slide?
• Entropy-based methods for computing uncertainty of a component:

\[U \sum_{x \in C^*} - \Pr \sum_{x \in C} \log \Pr \sum_{x \in C} \Pr = x \]

• Per system:

\[\bar{U} = \frac{1}{|COMPS|} \sum_{C \in COMPS} U \sum_{x \in C} \Pr \]

![Diagram of electrical circuit](image-url)
- AHU systems are typically sensor-lean to reduce cost
- AHU models are imprecise due to:
 - fine-grained CFD modeling is too complex
 - the AHU model cannot include a model of the local weather
- Sensors may drift/fail
- As a result diagnosis may be inaccurate
- We propose an algorithm that can increase the diagnostic accuracy by “playing” with the system
 - for example the system can reconfigure the mixing box to confirm/disprove a hypothesis about a failing heating coil