Equation-Based Model Data Structure for High Level Physical Modelling, Model Simplification and Modelica-Export

Hisahiro Ito*, Akira Ohata
Toyota Motor Corporation, Japan

Ken Butts
Toyota Technical Centre – Ann Arbor, USA

Jürgen Gerhard, Masoud Abbaszadeh, David Linder, Erik Postma, Elena Shmoylova
Maplesoft, Canada
Outline

• Introduction
 – Plant Modelling Process

• Physics-Based Component Modelling
 – High Level Model Description / HLMD
 – High Level Modelling Tool / HLMT

• Equation-Based Model Data Structure
 – MSModel and Simplification
 – Modelica-Export

• Modelica & HLM/MSModel

• Conclusion
Introduction

Plant Modelling Process
In-vehicle Control System Development

• More challenging requirements
 – Better fuel economy
 – Less emission
 – Proven functional safety
 • including safety under unexpected circumstances
 – Without compromising driveability

• More time and cost are spent
 – How to keep competitiveness?
Concurrent Development

• Avoid bloat of development time and cost
 – Conventional development process:
 • Develop hardware first, software second
 – Instead, develop H/W and S/W together
 – Impact of the concurrent development
 • Experiment may be impossible at early stage of software development process
 • Key is to embrace Model-Based Development
 • Plant modelling is essential for MBD!
Need for Plant Model Creation

• Specific requirements for plant models in a control system development project
 – Not known a priori

• Existing plant model libraries
 – Useful as a starting point for further change to meet specific requirements
 – Too large library is hard to maintain, hinders swift model authoring
Desired Plant Modelling Technologies

1/2

• *Physical component modelling ... “HLMD & HLMT”*

• Data-based modelling
 – Simulated / measured

• Physics-and-data combined system modelling
 – Incremental introduction of a data-based subsystem model into/instead of a part of physics-based system model
 – As more data is made available through experiment
Desired Plant Modelling Technologies 2/2

• Model simplification ... “MSModel”
 – Component-level / System-level
 – Symbolic / Numeric / Symbolic-numeric combined

• Optimization

• Model / Data / Process management
 – Efficient reuse/exchange
 – Process standardization
 – Traceability
Rapid Modelling 1/2

• Plant models have to be built in a timely manner
 – Specific requirement is not known a priori

• Stance:
 – *Have modelling methods at hand, ready to creat/modify a model for a specific need responsively.*
Rapid Modelling 2/2

• Equation-based approach?
 – Versatile, but needs additional methods to be rapid enough

• Sophisticated modelling techniques?
 – Not widely accepted for production use in Toyota, e.g.
 • Abstraction and inheritance
 • Bond-graph
 – “Simple over clever” is preferred
 • Efficient comprehensibility matters a lot
Goal of Plant Modelling Process

• Build a closed-loop simulation system with control software (XiL)
 – MiL ... Control design
 – SiL ... Software implementation verification & validation (V&V)
 – HiL ... ECU V&V - computation load, execution and communication timing etc.
 – Control software is developed using Simulink
 – Simscape is the target platform for plant models
 • Connectivity with Control Software
 • Code-Generation
Plant Modelling Process

- Start from physics-based component modelling
 - Design phase of a plant model component using high level modelling framework, HLMD/HLMT
- Simplify and export to Modelica via MSModel data structure
- Further transform to Simscape for system modelling
 - Perform integration with data-based models, system-level simplification, optimization
- Close loop with control software (MiL/SiL) or ECU (HiL)
Physics-Based Component Modelling

High Level Model Description / HLMD
High Level Model Description / HLMD

• Description of a physical component
 – For efficient design, review and reuse
 – Control volume approach
 – Set of equations can be derived
 • Derivation requires symbolic manipulation

• Domain neutral
 – For continuous system
 • Mechanical, thermal, electric, neumatic, chemical, viscoelastic, electrochemical, ...
 • Includes “piecewise”, only for smooth switching
 – Knowledge on constitutive equations required
 HLMD Example

• Target physical component:
 – A closed chamber

• Combustion occurs inside:

\[H_2 + O_2 \rightarrow H_2O + \frac{1}{2}O_2 + c \ [J] \]
Modelling Steps to Create HLMD

1) Split a physical component (an HLM system) into HLM components
2) Define ports for each HLM component
3) Connect HLM components via ports
4) For each HLM component,
 – Define conservation quantities (CQs)
 – Define flows of CQs
5) Set constitutive equations for CQs and CQ flows
6) Set HLM system-level constraints as needed
Additionally, intermediate variables can be defined inside an HLM component and at a port
Parameters (constant symbols) can be defined as needed
HLMD of Combustion Model in A Closed Chamber

Constraint:

\[
\begin{align*}
P_{\text{unb}}(t) &= P_{\text{bur}}(t) \\
V_{\text{unb}}(t) + V_{\text{bur}}(t) &= V_0
\end{align*}
\]
Equation Construction from HLMD

\[
\frac{d}{dt} N_{\text{H}_2\text{O}, ff}(t) = n_{\text{H}_2\text{toH}_2\text{O}, ff}(t) + n_{\text{O}_2\text{toH}_2\text{O}, ff}(t) - n_{\text{H}_2\text{O}, ff}(t) - e_{ff}(t)
\]

- Equations are built to conserve CQs
Plain Set of HLM Equations

- The combustion model
 - Has 44 equations
 - 13 differential equations (DEs)
 - 31 algebraic equations (AEs)
 - Not ready for simulation in general
 - Physically
 - Could have multiple solutions
 - Mathematically
 - Could be a high-index DAE system
 - May contain redundant equations
Deriving a *Simulatable* Set of Equations

• Fully automated
 – Methods
 • Isolated HLM component detection
 – for single solution selection
 • Symbolic manipulation including index reduction
 – for high-index DAE, redundant equations
 – Derives index-1 DAEs or ODEs

• Proof of single solution existence
 – Research in progress
Simulatable Set of Equations

• The combustion model
 – Plain HLM had 44 equations
 • 13 DEs
 • 31 AEs
 – Simulatable HLM has 43 equations:
 • 11 DEs (7 explicit, 4 implicit)
 – 8 differential variables (DVs) need initial conditions
 – 3 other variables are algebraic (AVs)
 • 32 AEs (32 explicit, 0 implicit)
FYI: 7 Explicit Differential Equations

\[1, \ldots, \frac{d}{dt} \text{bur.NH2O}(t) = 2\text{NO2I}(t) - 2\text{NO2O}(t) \]

\[2, \ldots, \frac{d}{dt} \text{bur.NO2}(t) = \text{NO2O}(t) \]

\[3, \ldots, \frac{d}{dt} \text{bur.f}(t) = \frac{-2 \text{bur.f}(t) \text{NO2I}(t) + \text{bur.f}(t) \text{NO2O}(t) + 12 \text{NO2I}(t) - 7 \text{NO2O}(t)}{\text{bur.NO2}(t) + \text{bur.NH2O}(t)} \]

\[4, \ldots, \frac{d}{dt} \text{mid.NH2O}(t) = -4839449 \text{NO2I}(t) + 4839449 \text{NO2O}(t) \]

\[5, \ldots, \frac{d}{dt} \text{mix.NH2}(t) = -2 \text{NO2I}(t) + 2 \text{NO2O}(t) \]

\[6, \ldots, \frac{d}{dt} \text{mix.NO2}(t) = -\text{NO2I}(t) \]

\[7, \ldots, \frac{d}{dt} \text{mix.p}(t) = -\frac{1}{5} \frac{5 \text{mix.p}(t) \left(\frac{d}{dt} \text{mix.V}(t) \right) + 2 \text{mix.e}(t)}{\text{mix.V}(t)} \]

(Parameter values have been assigned.)
FYI: 4 Implicit Differential Equations

\[1, \ldots, \left(16 \operatorname{mix}(p(t)) \operatorname{mix}(\text{No}_2(t)) + \operatorname{mix}(p(t)) \operatorname{mix}(\text{NH}_2(t)) \left(\frac{d}{dt} \operatorname{mix}(V(t)) \right) \right) + \left(-\operatorname{mix}(\text{NH}_2(t)) - 16 \operatorname{mix}(\text{No}_2(t)) \right) \operatorname{mix}(e(t)) \\
+ 63 \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) \text{no}_2(t) + \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) \text{no}_2O(t) = 0 \]

\[2, \ldots, \left(5 \operatorname{mix}(p(t)) \operatorname{bur}(\text{No}_2(t)) \operatorname{bur}(f(t)) + 5 \operatorname{mix}(p(t)) \operatorname{bur}(\text{NH}_2o(t)) \operatorname{bur}(f(t)) \left(\frac{d}{dt} \operatorname{mix}(V(t)) \right) \right) + \left(10 \operatorname{mix}(V(t)) \operatorname{bur}(\text{No}_2(t)) \\
+ 10 \operatorname{mix}(V(t)) \operatorname{bur}(\text{NH}_2o(t)) - 2 \operatorname{bur}(f(t)) \operatorname{mix}(V(t)) \operatorname{bur}(\text{No}_2(t)) - 2 \operatorname{bur}(f(t)) \operatorname{mix}(V(t)) \operatorname{bur}(\text{NH}_2o(t)) + 2 \operatorname{bur}(\text{No}_2(t)) \operatorname{bur}(f(t)) \\
+ 2 \operatorname{bur}(\text{NH}_2o(t)) \operatorname{bur}(f(t)) \operatorname{mix}(e(t)) + \left(48394500 \operatorname{mix}(V(t)) \operatorname{bur}(\text{No}_2(t)) + 48394500 \operatorname{mix}(V(t)) \operatorname{bur}(\text{NH}_2o(t)) \\
- 10 \operatorname{mix}(p(t)) \operatorname{mix}(V(t))^2 \operatorname{bur}(f(t)) + 60 \operatorname{mix}(p(t)) \operatorname{mix}(V(t))^2 + 10 \operatorname{bur}(f(t)) \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) - 60 \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) \right) \text{no}_2I(t) + \left(\\
-48394500 \operatorname{mix}(V(t)) \operatorname{bur}(\text{No}_2(t)) - 48394500 \operatorname{mix}(V(t)) \operatorname{bur}(\text{NH}_2o(t)) + 5 \operatorname{mix}(p(t)) \operatorname{mix}(V(t))^2 \operatorname{bur}(f(t)) - 35 \operatorname{mix}(p(t)) \operatorname{mix}(V(t))^2 \\
- 5 \operatorname{bur}(f(t)) \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) + 35 \operatorname{mix}(p(t)) \operatorname{mix}(V(t)) \right) \text{no}_2O(t) = 0 \]

\[3, \ldots, 601365581 \operatorname{mix}(\text{No}_2(t)) \operatorname{mix}(p(t)) \operatorname{mix}(\text{NH}_2(t)) - 9621849296 \operatorname{mix}(\text{No}_2(t))^2 \operatorname{mix}(p(t)) + \left(601365581 \operatorname{mix}(\text{No}_2(t)) \operatorname{mix}(p(t)) \operatorname{mix}(\text{NH}_2(t)) \\
+ 9621849296 \operatorname{mix}(\text{No}_2(t))^2 \operatorname{mix}(p(t)) \right) \left(\frac{d}{dt} \operatorname{mix}(V(t)) \right) + \left(6250000000000000 \operatorname{mix}(\text{NH}_2(t)) \\
+ 6250000000000000 \operatorname{mix}(\text{No}_2(t)) \right) \text{no}_2I(t) = 0 \]

\[4, \ldots, 601365581 \operatorname{mix}(\text{NH}_2(t))^2 \operatorname{mix}(p(t)) - 9621849296 \operatorname{mix}(\text{No}_2(t)) \operatorname{mix}(p(t)) \operatorname{mix}(\text{NH}_2(t)) + \left(601365581 \operatorname{mix}(\text{NH}_2(t))^2 \operatorname{mix}(p(t)) \\
+ 9621849296 \operatorname{mix}(\text{No}_2(t)) \operatorname{mix}(p(t)) \operatorname{mix}(\text{NH}_2(t)) \right) \left(\frac{d}{dt} \operatorname{mix}(V(t)) \right) + \left(1250000000000000 \operatorname{mix}(\text{NH}_2(t)) \\
+ 12500000000000000 \operatorname{mix}(\text{No}_2(t)) \right) \text{no}_2I(t) + \left(-12500000000000000 \operatorname{mix}(\text{NH}_2(t)) - 12500000000000000 \operatorname{mix}(\text{No}_2(t)) \right) \text{no}_2O(t) = 0 \]

(Parameter values have been assigned.)
FYI: Observation in HLMD

- Variables in 11 DEs in the combustion model
Physics-Based Component Modelling

High Level Modelling Tool / HLMT
High Level Modelling Tool / HLMT

- A software package for HLMD
 - Toyota developed with Maplesoft, owns IP
 - 1st prototype in 2008
 - 2nd prototype development plan later this year
- Modelling in HLMD and simulation possible
- Built on top of Maple, commercial symbolic manipulation software from Maplesoft
 - API available as Maple library, in addition to GUI
- Hoping to make it open
 - MSModel is the first step
HLMT GUI

- Model tree
- Diagram editor
- Messages
- Equations editor & viewer
Simulation in HLMT

• Plots of the combustion model simulation

- Volume of unbunred gas
- Pressure of unbunred gas
- Volume of bunred gas
- Pressure of bunred gas
Future Topic for HLM Framework

• Equation-based physical knowledge base repository
 – Repository of constitutive equations in various engineering domains:
 • Mechanical, thermal, electric, neumatic, chemical, viscoelastic, electrochemical, ...
 – Necessary for efficient modelling in HLM framework
 – Open format/specification preferred

• Proof of single solution existance
Equation-Based Model Data Structure

MSModel & Simplification
Equation-Based Model Simplification Research Project

• A research collaboration project between Maplesoft and Toyota
 – Symbolic / Numeric / Combined methods
 – Algorithms are implemented in Maple
 – Supports HLMD models

• MSModel data structure
 – Designed in this project
 – Realized in Maple language
MSModel

• Data Structure for Model Simplification
 – Designed for open R&D collaboration on equation-based model simplification methods
 – Specification has been published in our paper
 – Neutral for equation-based languages and tools

• Requirements: it can...
 – Store information generated in HLMT
 • Either plain or simulatable equations
 – Store a simplified/simulatable set of equations
 – Provide convenience for simplification methods
 – Generate a Modelica representation
MSModel Elements

• Core equations
 – Required to compute at every integration step

• Non-core equations
 – Required to compute only when necessary

• Additional information
 – Useful pieces of information for simplification and Modelica-export
 • Variable list etc.
Core Equations

• Required to compute at every integration step:
 – Differential equations / DEs
 – Algebraic equations / AEs
 – Intermediate equations / IEs
 • Stored in straight-line causal arrangement
 • No derivatives
Non-core Equations

• Required to compute only when necessary:
 – Dependent equations
 • Stored in straight-line causal arrangement
 • May be implicit
 • May contain derivatives
Additional Information

- Parameters
- Inputs and outputs
- Name, type, value of variables
- Blackbox functions
 - lookup tables, user-defined functions
Fictitious Example of MSModel

```plaintext
msm := Record(MSMODEL,
    DE=[ ( diff(x1(t),t)=-a*x1(t)+u1(t) ), ...],
    DV=[ 'x1' , ...],
    AE=[],
    AV=[],
    t='t',
    intermediate=(Array(1..0,[])),
    intermediateVariables=[],
    dependent=(Array(1..3,{
        1=[{ e1(t)=-1/2*sin(x1(t)) },{e1(t)}],
        2=[{ e2(t)=u1(t)*e1(t) },{e2(t)}],
        3=[{ y(t)=e1(t)+e2(t) },{y(t)}] })),
    dependentVariables=[ 'e1' , ...],
    parameters=[ 'a' , ...],
    inputs=[ 'u1' , ...],
    outputs=[ 'e1' , ...],
    variables=(table(
        (x1)=Record(MSVARIABLE, name=x1, type="differential", value=.9, unit=(NULL)),
        (a)=Record(MSVARIABLE, name=a, type="parameter", value=2, unit=(NULL)),
        ...)),
    blackboxes=[]
);
```
Equation-Based Model Simplification Methods

• Potential simplification methods to apply
 – Elimination
 • Removal of elementary equations (constants, equivalences)
 • Abstraction of common subexpressions (sum, products)
 – Generalized projection method for index reduction
 – Exact parameter reduction
 – etc. etc.

• Introduce intermediate variables and equations
 – As needed when the model can be reduced
 – Opcount is used to check how much reduced
FYI: Opcount

• Operation counts
 – Weighted counts of the number of operations
 • + 5; * 6; - 1; / 10; ^ 40; eval 50; > 5; and so on
 – Parameter symbols are replaced with values before counting
 – The cost of piecewise is the most expensive branch
Model Simplification Example

• The combustion model
 – Simulatable equations had 43 equations
 • Core: 11 DEs, 8 DVs; 32 AEs, 3 AVs; 0 IEs, 0 IVs
 • Non-core: 33 depEs, 33 depVs
 • 2093 opcounts
 – Simplified model has 28 equations
 • Core: 9 DEs, 6 DVs; 0 AEs, 3 AVs; 7 IEs, 7 IVs
 • Non-core: 12 depEs, 12 depVs
 • 1733 opcounts (17% reduction)
FYI: 9 Simplified DEs

1. \(eO(t) - mix.p(t) \left(\frac{d}{dt} mix.V(t) \right) - 4839450 no2I(t) + 4839450 no2O(t) \right) mix.Nh2(t) + \left(16 eO(t) - 77431200 no2I(t) \\
\quad - 16 mix.p(t) \right) \left(\frac{d}{dt} mix.V(t) \right) + 77431200 no2O(t) \right) mix.No2(t) - 63 v_6(t) \left(no2I(t) - \frac{1}{9} no2O(t) \right) = 0

2. \(v_{13}(t) \left(-1 + \frac{d}{dt} mix.V(t) \right) mix.No2(t)^2 + \left(v_{14}(t) mix.Nh2(t) \left(-1 + \frac{d}{dt} mix.V(t) \right) + 625000000000000 no2I(t) \right) mix.No2(t) \\
\quad + 625000000000000 no2I(t) mix.Nh2(t) = 0

3. \(v_{12}(t) \left(\frac{d}{dt} mix.V(t) \right) + \left(v_{11}(t) - 5 \right) \left(\frac{d}{dt} mix.p(t) \right) + 2 eO(t) \right) bur.No2(t)^2 + \left(11 mix.p(t) \left(\frac{d}{dt} mix.V(t) \right) + \left(11 mix.V(t) - 11 \right) \left(\frac{d}{dt} mix.p(t) \right) \\
\quad + 4 eO(t) \right) bur.Nh2o(t) - 2 v_{13}(t) \left(no2I(t) - no2O(t) \right) \right) bur.No2(t) + 6 bur.Nh2o(t) \left(\frac{d}{dt} mix.p(t) \right) - bur.V(t) \left(\frac{d}{dt} mix.p(t) \right) \\
\quad + \frac{1}{3} eO(t) \right) bur.Nh2o(t) + \frac{1}{6} v_{13}(t) \right) no2O(t) = 0

4. \(v_{11}(t) \left(\frac{d}{dt} mix.p(t) \right) + v_{12}(t) \left(\frac{d}{dt} mix.V(t) \right) + 2 eO(t) - 9678900 no2I(t) + 9678900 no2O(t) = 0

5. \(v_{14}(t) \left(-1 + \frac{d}{dt} mix.V(t) \right) mix.Nh2(t)^2 + \left(v_{15}(t) \left(-1 + \frac{d}{dt} mix.V(t) \right) mix.No2(t) + 125000000000000 no2I(t) \\
\quad - 1250000000000000 no2O(t) \right) mix.Nh2(t) + 1250000000000000 mix.No2(t) \right) \left(no2I(t) - no2O(t) \right) = 0

6. \(\frac{d}{dt} bur.Nh2o(t) = 2 no2I(t) - 2 no2O(t) \\
7. \(\frac{d}{dt} mix.Nh2(t) = -2 no2I(t) + 2 no2O(t) \\
8. \(\frac{d}{dt} bur.No2(t) = no2O(t) \\
9. \(\frac{d}{dt} mix.No2(t) = -no2I(t)

(Parameter values have been assigned.)
FYI: 7 Intermediate Equations

1 = \{ \{ \text{bur}.V(t) = -\text{mix}.V(t) + 1 \}, \{ \text{bur}.V(t) \} \}
2 = \{ \{ v_6(t) = \text{mix}.p(t) \text{mix}.V(t) \}, \{ v_6(t) \} \}
3 = \{ \{ v_{11}(t) = 5 \text{mix}.V(t) \}, \{ v_{11}(t) \} \}
4 = \{ \{ v_{12}(t) = 5 \text{mix}.p(t) \}, \{ v_{12}(t) \} \}
5 = \{ \{ v_{14}(t) = 601365581 \text{mix}.p(t) \}, \{ v_{14}(t) \} \}
6 = \{ \{ v_{15}(t) = 9621849296 \text{mix}.p(t) \}, \{ v_{15}(t) \} \}
7 = \{ \{ v_{13}(t) = \text{mix}.p(t) \text{bur}.V(t) \}, \{ v_{13}(t) \} \}

(Parameter values have been assigned.)
Equation-Based
Model Data Structure

MSModel & Modelica-export
Modelica-Export from MSModel

• A feature implemented in Maplesoft-Toyota MSModel realization
• Modelica is viewed as a “hub” for global plant modelling R&D effort
• But, MSModel is not limited to Modelica
Modelica-Exported Combustion Model

equation

\[
\begin{align*}
(v_{12} \cdot \text{der}(\text{mix}_V) + (v_{11} - 5) \cdot \text{der}(\text{mix}_p) + 2 \cdot eO) \cdot \text{bur}_\text{No2}^2 &\quad + ((11 \cdot \text{mix}_p \cdot \text{der}(\text{mix}_V) + (11 \cdot \text{mix}_V - 11) \cdot \text{der}(\text{mix}_p) + 4 \cdot eO) \cdot \text{bur}_\text{Nh2o} - 2 \cdot v_{13} \cdot (\text{no2I} - \text{no2O})) \cdot \text{bur}_\text{No2} + 6 \cdot \text{bur}_\text{Nh2o} \cdot ((\text{mix}_p \cdot \text{der}(\text{mix}_V) - \text{bur}_V \cdot \text{der}(\text{mix}_p) + 1/3 \cdot eO) \cdot \text{bur}_\text{Nh2o} + 1/6 \cdot v_{13} \cdot \text{no2O}) = 0; \\
(eO - \text{mix}_p \cdot \text{der}(\text{mix}_V) - 4839450 \cdot \text{no2I} + 4839450 \cdot \text{no2O}) \cdot \text{mix}_\text{Nh2} + (16 \cdot eO - 77431200 \cdot \text{no2I} - 16 \cdot \text{mix}_p \cdot \text{der}(\text{mix}_V) + 77431200 \cdot \text{no2O}) \cdot \text{mix}_\text{No2} - 63 \cdot v_6 \cdot (\text{no2I} - 1/9 \cdot \text{no2O}) = 0; \\
v_{14} \cdot (-1 + \text{der}(\text{mix}_V)) \cdot \text{mix}_\text{Nh2}^2 &\quad + (v_{15} \cdot (-1 + \text{der}(\text{mix}_V)) \cdot \text{mix}_\text{No2} + 12500000000000000 \cdot \text{no2I} - 12500000000000000 \cdot \text{no2O}) \cdot \text{mix}_\text{Nh2} + 12500000000000000 \cdot \text{no2I} \cdot \text{mix}_\text{No2} + (no2I - no2O) = 0; \\
v_{15} \cdot (-1 + \text{der}(\text{mix}_V)) \cdot \text{mix}_\text{No2}^2 &\quad + (v_{14} \cdot \text{mix}_\text{Nh2} \cdot (-1 + \text{der}(\text{mix}_V)) + 6250000000000000 \cdot \text{no2I}) \cdot \text{mix}_\text{No2} + 6250000000000000 \cdot \text{no2I} \cdot \text{mix}_\text{Nh2} = 0; \\
v_{11} \cdot \text{der}(\text{mix}_p) + v_{12} \cdot \text{der}(\text{mix}_V) + 2 \cdot eO - 9678900 \cdot \text{no2I} + 9678900 \cdot \text{no2O} = 0; \\
\text{der}(\text{bur}_\text{Nh2o}) &\quad = 2 \cdot \text{no2I} - 2 \cdot \text{no2O}; \\
\text{der}(\text{mix}_\text{Nh2}) &\quad = -2 \cdot \text{no2I} + 2 \cdot \text{no2O}; \\
\text{der}(\text{bur}_\text{No2}) &\quad = \text{no2O}; \\
\text{der}(\text{mix}_\text{No2}) &\quad = -\text{no2I}; \\
\text{bur}_V &\quad = -\text{mix}_V + 1; \\
v_6 &\quad = \text{mix}_p \cdot \text{mix}_V; \\
v_{11} &\quad = 5 \cdot \text{mix}_V; \\
v_{12} &\quad = 5 \cdot \text{mix}_p; \\
v_{13} &\quad = \text{mix}_p \cdot \text{bur}_V; \\
v_{14} &\quad = 601365581 \cdot \text{mix}_p; \\
v_{15} &\quad = 9621849296 \cdot \text{mix}_p;
\end{align*}
\]
Simulation Result 1/2

- The exported combustion model
- Produced in OpenModelica-1.7.0
Simulation Result 2/2

- Produced in MapleSim-4.5

Volume of unbunred gas

Pressure of unbunred gas

Volume of bunred gas

Pressure of bunred gas
Future Topic for MSModel

• Connectivity management for components
 – Open issue for MSModel
 – Need a design to cover HLMD, Modelica and Simscape at least
 • Modelica – Connector
 • Simscape – Domain
Modelica & HLM/MSModel
Modelica & HLM Framework 1/2

• HLMD & HLMT
 – Framework to create physical components
 • The whole purpose of HLMD/HLMT
 • Other features are out of scope (by design)

• Modelica & Modelica-based Tools
 – Modelling and simulation platform for the DAE system
 • Much more feature rich than the HLM framework
 – Inside of a Modelica component does not necessarily have to follow physical principles
Modelica & HLM Framework 2/2

- HLM framework can complement Modelica (and Simscape) for component creation
 - MSModel plays a key role to bridge HLMD and Modelica
 - Toyota is considering Simscape in addition to Modelica
Functional Mock-up Interface & MSModel

• Primary purpose of MSModel:
 – Equation-based model simplification
 • No support for many Modelica features

• Primary purpose of FMI:
 – Integrated simulation of Modelica-based components
Conclusion
Conclusion 1/2

• Introduced in this presentation
 – HLM framework
 • Physical component modelling method
 • Can complement Modelica, Simscape
 – MSModel
 • Data structure for model simplification
 • Key to bridge HLM and Modelica
 • Specification has been published

• Key technology
 – Symbolic manipulation
 • For model simplification
 • Hope to have more research in an open environment
Conclusion 2/2

• Future topics
 – HLM framework
 • Proof of single solution existance
 • Physical knowledge base repository
 – MSModel
 • Connectivity management
Thank you.