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The Software-Hardware Integration Problem

Cvber-Phvsical System Modeling

« At the early stages of system development, many decisions must be
made about how the system will be realised as a combination of
Software and Hardware

 Requirements of the system at these early stages lack quantified
and temporal information so it is hard to make an informed decision

« Changing the partioning of software / hardware or how they interact
later in development can be time-consuming and costly

 There is a potential for errors and incompatibility to be introduced as
software/hardware specifications are created independently
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Example: Model of Automated Train Protection System

An ATP System monitors train position and speed, and
may apply brakes if the driver does not react in time

signaiPosition

. signalValue :
Signal Sensors : TralllnTra.cks
signalPosition, signalValue

sensor values

desired

Train speed Driver
position, speed desiredSpeed, reset

speed

apply brake

reset
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Introduction to Behavior Engineering

Behavior Engineering for Requirements Analysis

» 5 large-scale industry projects
— In Defence, Transportation, Banking and Finance
— Between 800-1250 requirements

 All previously reviewed with respective organisations’
Internal review processes

« Defect detection rate approximately 2 to 3 times that of
traditional ad-hoc, checklist-based, and scenario-based
reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees
Findings from Industry

Daniel Powell
http://aswec07.cs.latrobe.edu.au/5.zip
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Formalization - Requirements Translation

Behavior Tree

Functional Requirement —

When a car Is arrives, ]

if the gate is open the car proceeds, i
otherwise if the gate is closed, when -

GATE 1 GATE
? Open ? ?Closed ?

the driver presses the button ~ CAR L | orRver
it causes the gate to open ~ [Proceeds | 7PlPresses]Button]??
1 BUTTON

Formalization
— clarification and preservation of intent
— strict use of original vocabulary -
—removes ambiguity, aliases, etc

— aids stakeholder validation, understanding
— approaches repeatability
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A Brief Introduction to Behavior Engineering

« Behavior Engineering is a methodology with a tightly interlinked
language and process

Behavior Modeling Process
(BMP)

Behavior Modeling Language (BML)

Behavior Trees (BT)

Composition Trees (CT)

Requirements Translation

Requirement Behavior Trees
(RBTS)

Requirement Composition Tree
(RCT)

Requirements Integration

Integrated Behavior Tree
(IBT)

Integrated Composition Tree
(ICT)

System Specification

Model Behavior Tree
(MBT)

Model Composition Tree
(MCT)

System Design

Design Behavior Tree
(DBT)

Design Composition Tree
(DCT)
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Introduction to Behavior Engineering

ATP_CONTROLLER

> vale <

Y
R6 ATP_CONTROLLER

How to translate from a Requirement in
Natural Language to an RBT

? value=1 ?

What INFORMATION
() [ Caution ]

R6. If a caution signal is returned to the ATP controller then the alg@rm = : - :
is enabled within the driver’s cab. Furthermore, once the glarm — Flow
. . - CAB [
has been enabled, if the speed of the train is not observed/to be (witin) of
decreasing then the ATP controller activates the train’s Jraking T | omvew
system. Control
Y
TheTag traces thege Behavior Tree nodes 6ach to R Rl

0 [Speed[Decreasing] ]

Reguirement 6.

Y
R6 ATP_CONTROLLER

[ Activate |

A+ and a yellow color denote the behavior ig implicd __
Oy the requirements 0

/What
(of)

BRAKES /

TRAIN
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A Brief Introduction to Behavior Englneerlng

ATP_CONTROLLER

> vale <

Y

How to translate from a Requirement in
Natural Language to an RBT L | e

What INFORMATION
() [ Caution ]

R6. If a caution signal is returned to the ATP controller then the alarm - : - :
Is enabled within the driver’s cab. Furthermore, once the alarm —
has been enabled, if the speed of the train is not observed to be iy |
decreasing then the ATP controller activates the train’s brakin T | omvew
system.
Y
ATP Controller receives a value from another component R Rl

0 [Speed[Decreasing] ]

Chech if the value is a caution signal — v

R6 ATP_CONTROLLER

[ Activate ]

What

Jf it is, enalGle the Alarm. To maintain the intent of the o | A
original requirement, use a relation to show the Alarm is T | e
enabled in the Drivers Cal.
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A Brief Introduction to Behavior Englneerlng

ATP_CONTROLLER

> vale <

How to translate from a Requirement in '

R6 ATP_CONTROLLER

Natural Language to an RBT R e
() [ Caution ]
Y
R6. If a caution signal is returned to the ATP controller then the alarm = : - :
is enabled within the driver’s cab. Furthermore, once the alarm —
has been enabled, if the speed of the train is not observed to be iy |
decreasing then the ATP controller activates the train’s braking B

(of)

system.

Y
R6 ATP_CONTROLLER

Jt ig implied the ATP Controller must observe whether — R Rl

the Traing speed is decreasging. 0 |peepecreasal

Y
R6 ATP_CONTROLLER

Jf the Train isn't decreasing in speed, the ATP Controller  pce |
activates the Braking System of the Train. | pakes

0
/What
(of)

TRAIN

.. Which results in the Braking System Geing Activated —
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Comodeling of Cyber-Physical Systems

Revisited

« At the early stages of system development, many decisions must be
made about how the system will be realised as a combination of
Software and Hardware

 Requirements of the system at these early stages lack quantified
and temporal information so it is hard to make an informed decision

« Changing the partioning of software / hardware or how they interact
later in development can be time-consuming and costly

 There is a potential for errors and incompatibility to be introduced as
software/hardware specifications are created independently
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Comodeling Revisited

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals. i.e. they detect what the signal is displaying Lo the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, 1 and 2 dencte the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the Sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.

Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

R& Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

RO If enabled. the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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Comodeling Revisited

Interaction with Sensors ...

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they delect what the signal is displaying (0 the train driver. How ()fta“
R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in d ocs a"s nee d
the range 0 to 3, where 0, I and 2 denote the danger, caution, and proceed signals respectively. The fourth

sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between to 60 caec&ed?
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the HV

brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enables—wTnim ne
Furthermore. once the alarm has been enabled. if the speed of the train . not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately \
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently ’
returned to the ATP controller. Decreas'“g

R8 Note that if the braking system is activated then the ATP controller ignores all sensor input until the system 6’/ ﬂow mucﬁ?
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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Comodeling Revisited

Interaction with Actuators ...

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying (o the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, I and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes, Whaat regponse
RG If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab. TI#4€ 1S wadvstwaéﬂy

Furthermore. once the alarm has been enabled. if the speed of the train is not observed to be decreasing Q
then the ATP controller activates the train’s braking system. accep tagee’

R7 In the case of a danger signal being retumed to the ATP controller, the braking system i&_immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is Swssesseniy
returned to the ATP controller.

R8 Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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Comodeling Revisited

Software / Hardware Partitioning ...

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying (o the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, I and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise betwee
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated am of the three se@
If there does not exist a majority then an undefined value is returnel T imcAdARcaSieicn

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.
Furthermore. once the alarm has been enabled. if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

R8 Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Griffith

UNIVERSITY

Table 1. Requirements of the ATP system

4}{7 Linkoping University

Perform in

Software
or

Hardware?




Comodeling Revisited

The Environment in which the system will exist ...

Requirement  Description

’A‘-r—-_._-__-_-\-‘m»'_
R1 The ATP system is locate§on board the train. I} involves a central controller and five boundary subsystems
that manage the sensors, s=pranes, alarm and a reset mechanism.

R2 The sensors are attachegl to thy side of the train and detect information on the approach to track-side
signals, i.e. they detect pvhat the Ngnal is displaying (o the train driver.

R3 In order to reduce the

How far apart
are the signals?

sensor value, i.e. 3,
the signal and the

generated if an
NSO

R4 The sensor value geturned to the ATP contriyller is calculated as the majority of the three sensor readings.
If there does notgxist a majority then an unddfined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP conyoller then no action is taken with respect to the train’s
brakes.

R6 If a caution gignal is returned to the ATP controllyr then the alarm is enabled within the driver’s cab.

Furthermorg! once the alarm has been enabled. if the\speed of the train is not observed to be decreasing
then the AP controller activates the train’s braking sys¥em.

R7 In the cage of a danger signal being returned to the ATR\controller, the braking system is immediately
activatedfand the alarm is enabled. Once enabled, the alarm\g disabled if a proceed signal is subsequently
returned to the ATP controller.

R8 Note tflat if the braking system is activated then the ATP controllyrignores all sensor input until the system
has bfen reset.
R9 If e/ahle.d, the reset mechanism deactivates the train’s brakes and di\ables the alarm.

Y Table 1. Requirements of the ATP system \

Waat are the Will it Ge deployed on
characterigtics of the train? many different types of traing?
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Comodeling Revisited

* Previous implementation of Comodeling
— BE and Modelica models executed separately
— Integrated using Modelica external functions

( Modelica h (" Behavior Engineering )
e N e
[ Modelica ] [ BE I
Model Model
¥ Y
(Modelica Model (C++) ) (" BE Model (C++) )
s ~
(" External Functions )
(C] pexecute
2 N _ —>(8T)
| startBT ) 2
o pd
o E
> ( cycleBT ) ||le—> S oot cT
C
pollActuator O /)
W\ J) W\ /)
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Behavior Trees in Modelica

 Why execute Behavior Trees in Modelica?

1. Comodeling is easier to apply as the comodel is
captured solely in Modelica

« A Behavior Tree can directly affect the acausal equations
used to model the hardware and environmental
components

 Modelica is used as an action language for the whole
integrated Co-model
2. Portable models — the ability to execute Behavior
Trees iIs available to a wide audience, several tools

3. Comodeling can be used with other complementary
approaches such as the virtual verification of
system designs against system requirements
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Behavior Trees in Modelica

 Representing Behavior Trees in Modelica
— Basic Nodes
o State Realisation, Selection, Guard, Input, Output

— Branching & Composition

« Sequential Composition, Atomic Composition,
Parallel Branching, Alternative Branching

 Reference, Reversion, Branch-Kill,
Synchronisation
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Behavior Trees in Modelica

e State Realisation

— A state realisation updates the state variable of the
associated component to the enumerated value of the
behavior of the BT node.

c.state := Integer(c.states.s);
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Behavior Trees in Modelica

e Selection

— A selection performs an equality check on the state
variable of the associated component, comparing it to
the enumerated value of the behavior of the BT node.
Depending on the result of this equality check, the
flow of control either continues or is terminated.

If c.state == c.state_s then

... I/ Continue flow of control
else

... Il Terminate branch
end if;
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Behavior Trees in Modelica

e Guard

— A guard is similar to a selection, with the exception
that the else branch is not included to ensure that the
guard is continually re-evaluated until true.

If c.state == c.state_s then
... I/ Continue flow of control
end if;
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Behavior Trees in Modelica

e |Input

— Inputs and outputs are implemented as boolean
variables. When the variable is true, the input is
active. Events last for one cycle, to ensure that if an
Internal output is active in one branch, it can be
received by an internal output in another branch.
Inputs are represented with an equality check that is
true if the associated event becomes active.

If e2 then

.. /I Continue flow of control
end if;
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Behavior Trees in Modelica

e Sequential Composition
— Updates the value of the branch variable

If branchl == 1 then
... Il Node behavior
branchl := 2;

elseif ...
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Behavior Trees in Modelica

« Parallel Branching

— Clears the current branch value and sets the branch
value of the child branches to their first node.

If branchl == 1 then
... I/ Node behavior

branchl := 0;

branch2 :=1;

branch3 :=1;
elseif ...

“JJ UNT\’EI'Q:ISITQ A& Linkoping University pe Ia b I.I.I



Behavior Trees in Modelica

« Alternative Branching

— As per parallel branch, but when the first node of any
of the child branches is activated all the sibling
branches are terminated.

If branch2 == 1 then
... I/ Node behavior

branch2 := 2;
branch3 := 0;
end if;
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Behavior Trees in Modelica

e Atomic Composition

— Adds further constraint to all sibling branches of
atomic composed nodes that flow of control cannot
continue if the branch values of the atomic composed
nodes are active.

If branch3 == 1 and not(branch2==1 or
branch2==2) then

... Il Node behavior
branch3 := 2;
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Behavior Trees in Modelica

e Reference

— Clears the current branch value and sets the branch
value of the destination node.

If branch3 == 1 then
branch3 := 0;
branch2 := 2;
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Behavior Trees in Modelica

e Reversion

— Clears the current branch value and all sibling parallel
branches and sets the branch value of the destination
node.

If branchl == 3 then

branch2 := 0
branch3 := 0;
branchl = 1;
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Behavior Trees in Modelica

 Branch-Kill

— Clears the branch value of the destination node and
the branch value of any of its descendants.

If branchl == 2 then
branch3 := 0;
.. /I Continue flow of control
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Behavior Trees in Modelica

e Synchronisation

— One synchronisation node checks when the branch
value of all nodes is set correctly and sets a boolean
variable to true. All other synchronisation nodes wait
until this Boolean variable is true.

If branch3 == 2 and branch2 == 3 then
syncl :=true;
... I/ Node behavior
... I Continue flow of control
If branch2 == 3 and syncl then
... Il Continue flow of control
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VVDR — Virtual Verification of Design Requirements

ModelicaML Example: System Requirements

sm: evaluating the requirement

[

«Requirement s «requir_eme_nt»_
id = 001 Max level of liquid in a tank
text = The lewel of liguid in a tank shall never 1 = evariables maxLevel: ModelicaReal
; - 7, :
exceed E_ED% thhe_tank—helght. 2 evariables tank_height: ModelicaRes)
specifiesType = [Tank] = evariables level: ModelicaReal o
Requirements areguirements
idq= ooz Volume of the tankl
Bk = The \fplum_e of the tank1 shall be 0.8m3. = evariabler tank_volume: ModelicaReal
specifiesObject = [TanksConnectedPl.tank1] e T e =
‘\
\
\
\
\
\

Luul UNT\’EI%WY A& Linkoping University

!

| [level = maxLevel * tank_height]

monitoring the level, no |

[level = maxLevel * tank_height]
violated

‘ violated ones or several times, conti itoring }

[level = maxLevel * tank_height]

sm: evaluate the volume requirement

monitoring

[tank_walume = design_value | or tank_wolume = design_valug]

violated

pelabaum



VVDR — Virtual Verification of Design Requirements

In ModelicaML Simulation and Requirements Check

grmodels
{TwoTankabystemExampls: SyatemSimuliations)
TankSystemSimulation

& Plot Window M=
File Edit Insert Tools Help

= ¢companents dm: TanksConnectedP|
= erequirementinstances 01 _tank1: Max level of liquid in a tank

ENequirementinstances 01 tank2: Max level of liquid in a tank | Open Save | Print | Select | Zoom | Pan | Grid | Hold | Preferences | Active | Image
= wgmentlnstances W02 tank1: “olume of the tank?

Plot by OpenModelica

1 i

Req. 001 is instantiated 2 times (there are 2 tanks in @ dm.tank1 b

the syst
e system) 0.8

g @ dm.tankz.h

[ \/\Zj\h "

My @001 _tankZ violated

[ tank-height is 0.6m

Req. 001 for the tank2 is violated o2

S0 100 150 200 250 300 350

\/ time
[ Req. 001 for the tankl is not violated K
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Complementing Comodeling with vWDR

 VVDR and BE provide differing benefits

— VVDR can verify different system design
alternatives against the same set of
requirements or drive verifications driven by
different test scenarios.

— BE provides a means to ensure the

* Their combination could leverage the
benefits of both approaches
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Complementing Comodeling with vWDR

 VVDR Is a method for virtual Verification of
system Design alternatives against system
Requirements

* In VWDR each requirement is formalised
as a model to evaluate violation and
fulfilment criteria

 These requirement models and a system
design are instantiated and bound into a
test model which is translated into
Modelica
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Complementing Comodeling with vWDR

e Two possible applications

1. Integrate BE with vVDR by using a model
pehavior tree as the source for generation of
poth VVDR requirements violation monitors
and test cases

2. Augment the existing comodeling approach
with vWDR. vVDR provides monitors that
evaluate the performance of different
comodels to find the best candidate that
fulfils a set of criteria
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Implementation Aspects

« Use declarative (equations) or imperative
(algorithms) constructs?

 Create a Modelica library or create a code
generator?

* |[n both cases, Behavior Trees in Modelica,
and ModelicaML state charts, a code
generator to algorithmic Modelica was
iImplemented
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Thank-you

* Any Questions?

 VVDR support in ModelicaML available from
www.openmodelica.org

« Alittle plug ... MS CONSULTING

— www.tjmyersconsulting.com
— Specialise in practicing Behavior Engineering
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