
Comodeling Revisited:
Execution of Behavior Trees in ModelicaExecution of Behavior Trees in Modelica

Toby Myers
Wladimir SchamaiWladimir Schamai
Peter Fritzson

Outline

• Introduction to Behavior Engineering
• Comodeling Revisited
• Behavior Trees in Modelica• Behavior Trees in Modelica
• Complementing Comodeling with vVDR

Outline

• Introduction to Behavior Engineering
• Comodeling Revisited
• Behavior Trees in Modelica• Behavior Trees in Modelica
• Complementing Comodeling with vVDR

The Software-Hardware Integration Problem
Cyber-Physical System ModelingCyber Physical System Modeling
• At the early stages of system development, many decisions must be

made about how the system will be realised as a combination ofmade about how the system will be realised as a combination of
Software and Hardware

• Requirements of the system at these early stages lack quantifiedRequirements of the system at these early stages lack quantified
and temporal information so it is hard to make an informed decision

• Changing the partioning of software / hardware or how they interactg g p g y
later in development can be time-consuming and costly

• There is a potential for errors and incompatibility to be introduced as
software/hardware specifications are created independently

Example: Model of Automated Train Protection System

An ATP System monitors train position and speed, and
may apply brakes if the driver does not react in timemay apply brakes if the driver does not react in time

Introduction to Behavior Engineering

Behavior Engineering for Requirements Analysis
• 5 large scale industry projects• 5 large-scale industry projects

– In Defence, Transportation, Banking and Finance
– Between 800-1250 requirementsBetween 800 1250 requirements

• All previously reviewed with respective organisations’
internal review processes p

• Defect detection rate approximately 2 to 3 times that of
traditional ad-hoc, checklist-based, and scenario-based
reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees
Findings from Industry

Daniel Powell
http://aswec07.cs.latrobe.edu.au/5.zip

Formalization - Requirements Translation

CAR

Behavior TreeBehavior Tree
1 CAR

?? Arrives ??

G

 Functional Requirement
When a car is arrives,

1 GATE
? Open ? 1 GATE

? Closed ?

When a car is arrives,
if the gate is open the car proceeds,

otherwise if the gate is closed, when
the driver presses the button

1 CAR 1 DRIVER
it causes the gate to open 1 [Proceeds] 1 DRIVER

??[[Presses]Button]??

1 BUTTON
[Pressed]

Formalization
– clarification and preservation of intent
– strict use of original vocabulary

[Pressed]

1 GATE
[Open]g y

– removes ambiguity, aliases, etc
– aids stakeholder validation, understanding
– approaches repeatabilityapproaches repeatability

A Brief Introduction to Behavior Engineering

• Behavior Engineering is a methodology with a tightly interlinked
l dlanguage and process

Behavior Modeling Process Behavior Modeling Language (BML)Behavior Modeling Process
(BMP)

g g g ()

Behavior Trees (BT) Composition Trees (CT)

Requirement Behavior Trees Requirement Composition Tree
Requirements Translation

Requirement Behavior Trees
(RBTs)

Requirement Composition Tree
(RCT)

Requirements Integration
Integrated Behavior Tree Integrated Composition Tree

Requirements Integration
(IBT) (ICT)

System Specification
Model Behavior Tree

(MBT)
Model Composition Tree

(MCT)
y p

(MBT) (MCT)

System Design
Design Behavior Tree

(DBT)
Design Composition Tree

(DCT)

Introduction to Behavior Engineering

How to translate from a Requirement in
N t l L t RBTNatural Language to an RBT

R6 If a caution signal is returned to the ATP controller then the alarmR6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm
has been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
system

Flow
of

Controlsystem.

The Tag traces these Behavior Tree nodes back to
R i t 6

Control

Requirement 6.

A ‘+’ and a yellow color denote the behavior is implied
by the requirements

A Brief Introduction to Behavior Engineering

How to translate from a Requirement in
N t l L t RBTNatural Language to an RBT

R6 If a caution signal is returned to the ATP controller then the alarmR6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm
has been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
systemsystem.

ATP Controller receives a value from another component

Check if the value is a caution signal

If it i bl th Al T i t i th i t t f th If it is, enable the Alarm. To maintain the intent of the
original requirement, use a relation to show the Alarm is
enabled in the Driver’s Cab.

A Brief Introduction to Behavior Engineering

How to translate from a Requirement in
N t l L t RBTNatural Language to an RBT

R6 If a caution signal is returned to the ATP controller then the alarmR6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm
has been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
systemsystem.

It is implied the ATP Controller must observe whether
th T i ’ d i d i the Train’s speed is decreasing.

If the Train isn’t decreasing in speed, the ATP Controller
activates the Braking System of the Trainactivates the Braking System of the Train.

.. Which results in the Braking System being Activated

Outline

• Introduction to Behavior Engineering
• Comodeling Revisited
• Behavior Trees in Modelica• Behavior Trees in Modelica
• Complementing Comodeling with vVDR

Comodeling of Cyber-Physical Systems
RevisitedRevisited
• At the early stages of system development, many decisions must be

made about how the system will be realised as a combination ofmade about how the system will be realised as a combination of
Software and Hardware

• Requirements of the system at these early stages lack quantifiedRequirements of the system at these early stages lack quantified
and temporal information so it is hard to make an informed decision

• Changing the partioning of software / hardware or how they interactg g p g y
later in development can be time-consuming and costly

• There is a potential for errors and incompatibility to be introduced as
software/hardware specifications are created independently

Comodeling Revisited

Comodeling Revisited
Interaction with Sensors …

How often
does this need
to be checked?

Decreasing
by how much?

Comodeling Revisited
Interaction with Actuators …

What response
time is realistically

acceptable?

Comodeling Revisited
Software / Hardware Partitioning …

Perform in
Software

oror
Hardware?

Comodeling Revisited
The Environment in which the system will exist …

How far apartf p
are the signals?

Will it be deployed on
 diff t t f t i ?

What are the
h t i ti f th t i ? many different types of trains?characteristics of the train?

Comodeling Revisited

• Previous implementation of Comodeling
– BE and Modelica models executed separately
– Integrated using Modelica external functionsIntegrated using Modelica external functions

Outline

• Introduction to Behavior Engineering
• Comodeling Revisited
• Behavior Trees in Modelica• Behavior Trees in Modelica
• Complementing Comodeling with vVDR

Behavior Trees in Modelica

• Why execute Behavior Trees in Modelica?
1. Comodeling is easier to apply as the comodel is

captured solely in Modelica
A B h i T di tl ff t th l ti• A Behavior Tree can directly affect the acausal equations
used to model the hardware and environmental
components

• Modelica is used as an action language for the whole
integrated Co-model

2 Portable models the ability to execute Behavior2. Portable models – the ability to execute Behavior
Trees is available to a wide audience, several tools

3 Comodeling can be used with other complementary3. Comodeling can be used with other complementary
approaches such as the virtual verification of
system designs against system requirementsy g g y q

Behavior Trees in Modelica

• Representing Behavior Trees in Modelica
– Basic Nodes

• State Realisation, Selection, Guard, Input, Output, , , p , p
– Branching & Composition

• Sequential Composition Atomic CompositionSequential Composition, Atomic Composition,
Parallel Branching, Alternative Branching

– OperatorsOperators
• Reference, Reversion, Branch-Kill,

SynchronisationSynchronisation

Behavior Trees in Modelica

• State Realisation
– A state realisation updates the state variable of the

associated component to the enumerated value of the
behavior of the BT nodebehavior of the BT node.

c.state := Integer(c.states.s);

Behavior Trees in Modelica

• Selection
– A selection performs an equality check on the state

variable of the associated component, comparing it to
the enumerated value of the behavior of the BT nodethe enumerated value of the behavior of the BT node.
Depending on the result of this equality check, the
flow of control either continues or is terminated.flow of control either continues or is terminated.

if c.state == c.state_s then
... // Continue flow of control

else
// Terminate branch... // Terminate branch

end if;

Behavior Trees in Modelica

• Guard
– A guard is similar to a selection, with the exception

that the else branch is not included to ensure that the
guard is continually re evaluated until trueguard is continually re-evaluated until true.

if c.state == c.state s thenif c.state c.state_s then
... // Continue flow of control

end if;

Behavior Trees in Modelica

• Input
– Inputs and outputs are implemented as boolean

variables. When the variable is true, the input is
active Events last for one cycle to ensure that if anactive. Events last for one cycle, to ensure that if an
internal output is active in one branch, it can be
received by an internal output in another branch.received by an internal output in another branch.
Inputs are represented with an equality check that is
true if the associated event becomes active.

if e2 then
// Continue flow of control... // Continue flow of control

end if;

Behavior Trees in Modelica

• Sequential Composition
– Updates the value of the branch variable

if branch1 == 1 then
... // Node behavior
branch1 := 2;
l ifelseif ...

Behavior Trees in Modelica

• Parallel Branching
– Clears the current branch value and sets the branch

value of the child branches to their first node.

if branch1 == 1 then
... // Node behavior... // Node behavior
branch1 := 0;
branch2 := 1;
branch3 := 1;

elseif ...

Behavior Trees in Modelica

• Alternative Branching
– As per parallel branch, but when the first node of any

of the child branches is activated all the sibling
branches are terminatedbranches are terminated.

if branch2 == 1 thenif branch2 1 then
... // Node behavior
branch2 := 2;
branch3 := 0;

end if;

Behavior Trees in Modelica

• Atomic Composition
– Adds further constraint to all sibling branches of

atomic composed nodes that flow of control cannot
continue if the branch values of the atomic composedcontinue if the branch values of the atomic composed
nodes are active.

if branch3 == 1 and not(branch2==1 or
branch2==2) then

... // Node behavior
branch3 := 2;

Behavior Trees in Modelica

• Reference
– Clears the current branch value and sets the branch

value of the destination node.

if branch3 == 1 then
branch3 := 0;branch3 : 0;
branch2 := 2;

Behavior Trees in Modelica

• Reversion
– Clears the current branch value and all sibling parallel

branches and sets the branch value of the destination
nodenode.

if branch1 == 3 thenif branch1 3 then
branch2 := 0;
branch3 := 0;
branch1 := 1;

Behavior Trees in Modelica

• Branch-Kill
– Clears the branch value of the destination node and

the branch value of any of its descendants.

if branch1 == 2 then
branch3 := 0;branch3 : 0;
… // Continue flow of control

Behavior Trees in Modelica

• Synchronisation
– One synchronisation node checks when the branch

value of all nodes is set correctly and sets a boolean
variable to true All other synchronisation nodes waitvariable to true. All other synchronisation nodes wait
until this Boolean variable is true.

if branch3 == 2 and branch2 == 3 then
sync1 := true;
... // Node behavior
... // Continue flow of control

if branch2 == 3 and sync1 thenif branch2 == 3 and sync1 then
... // Continue flow of control

Outline

• Introduction to Behavior Engineering
• Comodeling Revisited
• Behavior Trees in Modelica• Behavior Trees in Modelica
• Complementing Comodeling with vVDR

vVDR – Virtual Verification of Design Requirements
ModelicaML Example: System Requirements

T t l R i t F li d R i tTextual Requirement Formalized Requirement

vVDR – Virtual Verification of Design Requirements
in ModelicaML Simulation and Requirements Check

Req. 001 is instantiated 2 times (there are 2 tanks in

the system)

tank-height is 0.6m

Req. 001 for the tank2 is violated

Req. 001 for the tank1 is not violated

Complementing Comodeling with vVDR

• vVDR and BE provide differing benefits
– vVDR can verify different system design

alternatives against the same set of g
requirements or drive verifications driven by
different test scenarios.

– BE provides a means to ensure the
consistency of a specification.consistency of a specification.

• Their combination could leverage the
b fit f b th hbenefits of both approaches

Complementing Comodeling with vVDR

• vVDR is a method for virtual Verification of
system Design alternatives against system
Requirementsq

• In vVDR each requirement is formalised
as a model to evaluate violation andas a model to evaluate violation and
fulfilment criteria

• These requirement models and a system
design are instantiated and bound into adesign are instantiated and bound into a
test model which is translated into
ModelicaModelica

Complementing Comodeling with vVDR

• Two possible applications
1. Integrate BE with vVDR by using a model

behavior tree as the source for generation of g
both vVDR requirements violation monitors
and test cases

2. Augment the existing comodeling approach
with vVDR. vVDR provides monitors thatwith vVDR. vVDR provides monitors that
evaluate the performance of different
comodels to find the best candidate thatcomodels to find the best candidate that
fulfils a set of criteria

Implementation Aspects

• Use declarative (equations) or imperative
(algorithms) constructs?

• Create a Modelica library or create a codeCreate a Modelica library or create a code
generator?

• In both cases, Behavior Trees in Modelica,In both cases, Behavior Trees in Modelica,
and ModelicaML state charts, a code
generator to algorithmic Modelica wasgenerator to algorithmic Modelica was
implemented

Thank-you

• Any Questions?

• vVDR support in ModelicaML available from
www.openmodelica.org

• A little plug ...
tj lti– www.tjmyersconsulting.com

– Specialise in practicing Behavior Engineering

